PostgreSQL 3つ以上のテーブル結合完全ガイド:複雑なJOINをマスターして業務効率10倍

データベース・SQL

「2つのテーブル結合はできるけど、3つ以上になると急に難しくなる…」 「JOINの順番や種類をどう決めればいいか分からない」 「結合したら想定と違うデータが返ってきた」

データベース開発で、こんな壁にぶつかったことはありませんか?

実際のビジネスでは、3つ、4つ、時には10個以上のテーブルを結合する必要があります。例えば、ECサイトでは「ユーザー」「注文」「商品」「在庫」「配送」など、多数のテーブルが関連しています。

この記事では、PostgreSQLで3つ以上のテーブルを結合する基本パターンから高度なテクニックまで、実例とパフォーマンス測定結果を交えながら徹底的に解説していきます。


スポンサーリンク

🎯 3つのテーブル結合の基本パターン

まずは基本的なテーブル構造を理解

サンプルデータベース:ECサイト

テーブル構造:

-- ユーザーテーブル
CREATE TABLE users (
    user_id SERIAL PRIMARY KEY,
    username VARCHAR(50) NOT NULL,
    email VARCHAR(100) UNIQUE NOT NULL,
    created_at TIMESTAMP DEFAULT NOW()
);

-- 注文テーブル
CREATE TABLE orders (
    order_id SERIAL PRIMARY KEY,
    user_id INTEGER REFERENCES users(user_id),
    order_date DATE NOT NULL,
    total_amount DECIMAL(10, 2),
    status VARCHAR(20) DEFAULT 'pending'
);

-- 注文明細テーブル
CREATE TABLE order_items (
    item_id SERIAL PRIMARY KEY,
    order_id INTEGER REFERENCES orders(order_id),
    product_id INTEGER REFERENCES products(product_id),
    quantity INTEGER NOT NULL,
    unit_price DECIMAL(10, 2)
);

-- 商品テーブル
CREATE TABLE products (
    product_id SERIAL PRIMARY KEY,
    product_name VARCHAR(100) NOT NULL,
    category VARCHAR(50),
    stock_quantity INTEGER DEFAULT 0,
    price DECIMAL(10, 2)
);

-- カテゴリテーブル
CREATE TABLE categories (
    category_id SERIAL PRIMARY KEY,
    category_name VARCHAR(50) NOT NULL,
    parent_category_id INTEGER REFERENCES categories(category_id)
);

基本的な3テーブル結合

パターン1:チェーン型結合(A→B→C)

最も一般的なパターン:

-- ユーザーの注文と商品情報を取得
SELECT 
    u.username,
    u.email,
    o.order_id,
    o.order_date,
    p.product_name,
    oi.quantity,
    oi.unit_price,
    (oi.quantity * oi.unit_price) AS subtotal
FROM users u
INNER JOIN orders o ON u.user_id = o.user_id
INNER JOIN order_items oi ON o.order_id = oi.order_id
INNER JOIN products p ON oi.product_id = p.product_id
WHERE u.user_id = 1
ORDER BY o.order_date DESC, p.product_name;

実行結果の例:

username | email           | order_id | order_date | product_name | quantity | subtotal
---------|-----------------|----------|------------|--------------|----------|----------
山田太郎  | yamada@ex.com   | 1001     | 2024-01-15 | ノートPC     | 1        | 89800.00
山田太郎  | yamada@ex.com   | 1001     | 2024-01-15 | マウス       | 2        | 5980.00
山田太郎  | yamada@ex.com   | 1002     | 2024-01-20 | キーボード   | 1        | 12800.00

パターン2:スター型結合(中心テーブルから放射状)

一つのテーブルを中心に複数結合:

-- 注文を中心に、ユーザー、商品、配送情報を結合
SELECT 
    o.order_id,
    o.order_date,
    u.username,
    u.email,
    s.shipping_address,
    s.delivery_date,
    p.payment_method,
    p.payment_status
FROM orders o
LEFT JOIN users u ON o.user_id = u.user_id
LEFT JOIN shipping s ON o.order_id = s.order_id
LEFT JOIN payments p ON o.order_id = p.order_id
WHERE o.status = 'completed'
AND o.order_date >= '2024-01-01';

🔄 JOINの種類と使い分け

4種類のJOINを使いこなす

INNER JOIN:両方に存在するデータのみ

使用場面:必須の関連データ

-- 在庫がある商品の注文のみ表示
SELECT 
    o.order_id,
    oi.product_id,
    p.product_name,
    i.stock_quantity,
    oi.quantity as ordered_quantity
FROM orders o
INNER JOIN order_items oi ON o.order_id = oi.order_id
INNER JOIN products p ON oi.product_id = p.product_id
INNER JOIN inventory i ON p.product_id = i.product_id
WHERE i.stock_quantity >= oi.quantity;

LEFT JOIN:左側のテーブルをすべて保持

使用場面:オプショナルなデータ

-- すべてのユーザーと注文情報(注文がないユーザーも含む)
SELECT 
    u.user_id,
    u.username,
    COUNT(DISTINCT o.order_id) as order_count,
    COALESCE(SUM(oi.quantity * oi.unit_price), 0) as total_spent
FROM users u
LEFT JOIN orders o ON u.user_id = o.user_id
LEFT JOIN order_items oi ON o.order_id = oi.order_id
GROUP BY u.user_id, u.username
ORDER BY total_spent DESC;

RIGHT JOIN:右側のテーブルをすべて保持

使用場面:逆方向からの確認

-- すべての商品と売上情報(売れていない商品も含む)
SELECT 
    p.product_id,
    p.product_name,
    p.category,
    COUNT(DISTINCT oi.order_id) as times_ordered,
    COALESCE(SUM(oi.quantity), 0) as total_quantity_sold
FROM order_items oi
RIGHT JOIN products p ON oi.product_id = p.product_id
RIGHT JOIN categories c ON p.category = c.category_name
GROUP BY p.product_id, p.product_name, p.category
ORDER BY total_quantity_sold DESC;

FULL OUTER JOIN:両方のテーブルをすべて保持

使用場面:完全な比較や差分確認

-- 在庫と注文の完全な照合
SELECT 
    COALESCE(i.product_id, oi.product_id) as product_id,
    p.product_name,
    i.stock_quantity,
    COUNT(oi.item_id) as pending_orders,
    SUM(oi.quantity) as pending_quantity
FROM inventory i
FULL OUTER JOIN (
    SELECT oi.* FROM order_items oi
    JOIN orders o ON oi.order_id = o.order_id
    WHERE o.status = 'pending'
) oi ON i.product_id = oi.product_id
LEFT JOIN products p ON COALESCE(i.product_id, oi.product_id) = p.product_id
GROUP BY COALESCE(i.product_id, oi.product_id), p.product_name, i.stock_quantity
HAVING i.stock_quantity IS NULL OR SUM(oi.quantity) > i.stock_quantity;

JOIN条件の最適化

複合条件での結合

複数カラムでの結合:

-- 日付範囲を考慮した価格マスタとの結合
SELECT 
    o.order_id,
    o.order_date,
    oi.product_id,
    p.product_name,
    pm.price as master_price,
    oi.unit_price as ordered_price,
    (pm.price - oi.unit_price) as price_difference
FROM orders o
JOIN order_items oi ON o.order_id = oi.order_id
JOIN products p ON oi.product_id = p.product_id
JOIN price_master pm ON 
    p.product_id = pm.product_id
    AND o.order_date BETWEEN pm.valid_from AND pm.valid_to
WHERE ABS(pm.price - oi.unit_price) > 0.01;

💪 高度な結合テクニック

サブクエリとの組み合わせ

集計結果との結合

売上ランキングを含む結合:

-- 商品ごとの売上ランキングを含む注文詳細
WITH product_rankings AS (
    SELECT 
        p.product_id,
        p.product_name,
        SUM(oi.quantity * oi.unit_price) as total_sales,
        RANK() OVER (ORDER BY SUM(oi.quantity * oi.unit_price) DESC) as sales_rank
    FROM products p
    JOIN order_items oi ON p.product_id = oi.product_id
    JOIN orders o ON oi.order_id = o.order_id
    WHERE o.order_date >= '2024-01-01'
    GROUP BY p.product_id, p.product_name
)
SELECT 
    o.order_id,
    o.order_date,
    u.username,
    oi.product_id,
    pr.product_name,
    pr.sales_rank,
    pr.total_sales as product_total_sales,
    oi.quantity,
    oi.unit_price
FROM orders o
JOIN users u ON o.user_id = u.user_id
JOIN order_items oi ON o.order_id = oi.order_id
JOIN product_rankings pr ON oi.product_id = pr.product_id
WHERE pr.sales_rank <= 10
ORDER BY o.order_date DESC, pr.sales_rank;

LATERAL JOIN(相関サブクエリ結合)

各行に対して動的な結合

最新の関連データを取得:

-- 各ユーザーの最新3件の注文と商品
SELECT 
    u.user_id,
    u.username,
    recent_orders.order_id,
    recent_orders.order_date,
    recent_orders.product_names
FROM users u
CROSS JOIN LATERAL (
    SELECT 
        o.order_id,
        o.order_date,
        STRING_AGG(p.product_name, ', ' ORDER BY p.product_name) as product_names
    FROM orders o
    JOIN order_items oi ON o.order_id = oi.order_id
    JOIN products p ON oi.product_id = p.product_id
    WHERE o.user_id = u.user_id
    GROUP BY o.order_id, o.order_date
    ORDER BY o.order_date DESC
    LIMIT 3
) recent_orders
WHERE u.created_at >= '2024-01-01';

自己結合を含む複雑な結合

階層構造のデータ処理

カテゴリの階層を展開:

-- 3階層のカテゴリと商品を結合
WITH RECURSIVE category_tree AS (
    -- ベースケース:トップレベルカテゴリ
    SELECT 
        c.category_id,
        c.category_name,
        c.parent_category_id,
        c.category_name as full_path,
        1 as level
    FROM categories c
    WHERE c.parent_category_id IS NULL
    
    UNION ALL
    
    -- 再帰ケース:子カテゴリ
    SELECT 
        c.category_id,
        c.category_name,
        c.parent_category_id,
        ct.full_path || ' > ' || c.category_name,
        ct.level + 1
    FROM categories c
    JOIN category_tree ct ON c.parent_category_id = ct.category_id
    WHERE ct.level < 3
)
SELECT 
    ct.full_path as category_path,
    p.product_name,
    COUNT(DISTINCT oi.order_id) as order_count,
    SUM(oi.quantity) as total_quantity
FROM category_tree ct
JOIN products p ON p.category_id = ct.category_id
LEFT JOIN order_items oi ON p.product_id = oi.product_id
LEFT JOIN orders o ON oi.order_id = o.order_id
WHERE o.order_date >= '2024-01-01' OR o.order_date IS NULL
GROUP BY ct.full_path, p.product_name
ORDER BY ct.full_path, total_quantity DESC;

🚀 パフォーマンス最適化

インデックス戦略

結合に必要なインデックス

効果的なインデックス設計:

-- 外部キーには自動的にインデックスが作成されるが、追加で必要なもの

-- 複合インデックス(結合と絞り込み条件)
CREATE INDEX idx_orders_user_date ON orders(user_id, order_date);
CREATE INDEX idx_order_items_order_product ON order_items(order_id, product_id);

-- 部分インデックス(特定条件の結合を高速化)
CREATE INDEX idx_orders_pending ON orders(order_id) 
WHERE status = 'pending';

-- カバリングインデックス(結合に必要なカラムを含む)
CREATE INDEX idx_products_covering ON products(product_id) 
INCLUDE (product_name, category, price);

-- 関数インデックス(計算結果での結合)
CREATE INDEX idx_orders_month ON orders(DATE_TRUNC('month', order_date));

実行計画の分析

EXPLAIN ANALYZEで最適化

実行計画の確認と改善:

-- 実行計画の詳細分析
EXPLAIN (ANALYZE, BUFFERS, FORMAT JSON)
SELECT 
    u.username,
    COUNT(DISTINCT o.order_id) as order_count,
    SUM(oi.quantity * oi.unit_price) as total_spent
FROM users u
LEFT JOIN orders o ON u.user_id = o.user_id
LEFT JOIN order_items oi ON o.order_id = oi.order_id
LEFT JOIN products p ON oi.product_id = p.product_id
WHERE u.created_at >= '2024-01-01'
GROUP BY u.user_id, u.username;

-- 統計情報の更新
ANALYZE users, orders, order_items, products;

-- 結合順序のヒント(PostgreSQL 11以降)
/*+ Leading(u o oi p) HashJoin(u o) NestLoop(o oi) */
SELECT ...

結合順序の最適化

小さいテーブルから結合

効率的な結合順序:

-- 悪い例:大きなテーブルから開始
SELECT * FROM 
    order_items oi  -- 100万件
    JOIN orders o ON oi.order_id = o.order_id  -- 10万件
    JOIN users u ON o.user_id = u.user_id  -- 1万件
WHERE u.user_id = 100;

-- 良い例:小さなテーブルから開始
SELECT * FROM 
    users u  -- 1万件
    JOIN orders o ON u.user_id = o.user_id  -- 10万件
    JOIN order_items oi ON o.order_id = oi.order_id  -- 100万件
WHERE u.user_id = 100;

📊 実践的なユースケース

ケース1:売上分析レポート

月次売上レポートの生成

-- 月別・カテゴリ別・ユーザータイプ別の売上分析
WITH user_types AS (
    SELECT 
        u.user_id,
        CASE 
            WHEN COUNT(DISTINCT o.order_id) >= 10 THEN 'VIP'
            WHEN COUNT(DISTINCT o.order_id) >= 5 THEN 'Regular'
            ELSE 'New'
        END as user_type
    FROM users u
    LEFT JOIN orders o ON u.user_id = o.user_id
    GROUP BY u.user_id
)
SELECT 
    DATE_TRUNC('month', o.order_date) as month,
    c.category_name,
    ut.user_type,
    COUNT(DISTINCT o.order_id) as order_count,
    COUNT(DISTINCT o.user_id) as unique_customers,
    SUM(oi.quantity) as total_items,
    SUM(oi.quantity * oi.unit_price) as total_revenue,
    AVG(oi.quantity * oi.unit_price) as avg_order_value
FROM orders o
JOIN order_items oi ON o.order_id = oi.order_id
JOIN products p ON oi.product_id = p.product_id
JOIN categories c ON p.category_id = c.category_id
JOIN user_types ut ON o.user_id = ut.user_id
WHERE o.status = 'completed'
AND o.order_date >= '2024-01-01'
GROUP BY 
    DATE_TRUNC('month', o.order_date),
    c.category_name,
    ut.user_type
ORDER BY month DESC, total_revenue DESC;

ケース2:在庫管理システム

リアルタイム在庫状況

-- 在庫不足アラート(注文待ちと在庫を照合)
WITH pending_demand AS (
    SELECT 
        oi.product_id,
        SUM(oi.quantity) as pending_quantity
    FROM order_items oi
    JOIN orders o ON oi.order_id = o.order_id
    WHERE o.status IN ('pending', 'processing')
    GROUP BY oi.product_id
),
low_stock_products AS (
    SELECT 
        p.product_id,
        p.product_name,
        p.category,
        i.stock_quantity,
        i.reorder_level,
        pd.pending_quantity,
        (i.stock_quantity - COALESCE(pd.pending_quantity, 0)) as available_stock
    FROM products p
    JOIN inventory i ON p.product_id = i.product_id
    LEFT JOIN pending_demand pd ON p.product_id = pd.product_id
    WHERE i.stock_quantity - COALESCE(pd.pending_quantity, 0) < i.reorder_level
)
SELECT 
    lsp.*,
    s.supplier_name,
    s.lead_time_days,
    s.last_order_date,
    CASE 
        WHEN lsp.available_stock <= 0 THEN 'Critical'
        WHEN lsp.available_stock < lsp.reorder_level * 0.5 THEN 'Warning'
        ELSE 'Low'
    END as alert_level
FROM low_stock_products lsp
JOIN product_suppliers ps ON lsp.product_id = ps.product_id
JOIN suppliers s ON ps.supplier_id = s.supplier_id
ORDER BY 
    CASE 
        WHEN lsp.available_stock <= 0 THEN 1
        WHEN lsp.available_stock < lsp.reorder_level * 0.5 THEN 2
        ELSE 3
    END,
    lsp.available_stock;

ケース3:顧客セグメンテーション

RFM分析(Recency, Frequency, Monetary)

-- 顧客の購買行動を3つの指標で分析
WITH rfm_calc AS (
    SELECT 
        u.user_id,
        u.username,
        u.email,
        MAX(o.order_date) as last_order_date,
        COUNT(DISTINCT o.order_id) as order_frequency,
        SUM(oi.quantity * oi.unit_price) as monetary_value,
        DATE_PART('day', NOW() - MAX(o.order_date)) as recency_days
    FROM users u
    LEFT JOIN orders o ON u.user_id = o.user_id
    LEFT JOIN order_items oi ON o.order_id = oi.order_id
    WHERE o.status = 'completed'
    GROUP BY u.user_id, u.username, u.email
),
rfm_scores AS (
    SELECT 
        *,
        NTILE(5) OVER (ORDER BY recency_days DESC) as r_score,
        NTILE(5) OVER (ORDER BY order_frequency) as f_score,
        NTILE(5) OVER (ORDER BY monetary_value) as m_score
    FROM rfm_calc
    WHERE last_order_date IS NOT NULL
)
SELECT 
    rs.user_id,
    rs.username,
    rs.email,
    rs.recency_days,
    rs.order_frequency,
    rs.monetary_value,
    rs.r_score,
    rs.f_score,
    rs.m_score,
    (rs.r_score + rs.f_score + rs.m_score) as total_score,
    CASE 
        WHEN rs.r_score >= 4 AND rs.f_score >= 4 AND rs.m_score >= 4 THEN 'Champions'
        WHEN rs.r_score >= 3 AND rs.f_score >= 3 AND rs.m_score >= 3 THEN 'Loyal Customers'
        WHEN rs.r_score >= 3 AND rs.f_score <= 2 THEN 'New Customers'
        WHEN rs.r_score <= 2 AND rs.f_score >= 3 THEN 'At Risk'
        ELSE 'Lost'
    END as customer_segment
FROM rfm_scores rs
ORDER BY total_score DESC;

🔧 よくあるエラーと対処法

エラー1:カラム名の曖昧さ

問題と解決:

-- エラーが発生するクエリ
SELECT 
    user_id,  -- どのテーブルのuser_id?
    username,
    order_date
FROM users
JOIN orders ON users.user_id = orders.user_id;

-- ERROR: column reference "user_id" is ambiguous

-- 解決:テーブルエイリアスを使用
SELECT 
    u.user_id,
    u.username,
    o.order_date
FROM users u
JOIN orders o ON u.user_id = o.user_id;

エラー2:意図しないクロス結合

デカルト積の回避:

-- 危険:結合条件の漏れ
SELECT *
FROM users u, orders o, order_items oi
WHERE u.user_id = o.user_id;
-- order_itemsとの結合条件がない!

-- 安全:明示的なJOIN
SELECT *
FROM users u
JOIN orders o ON u.user_id = o.user_id
JOIN order_items oi ON o.order_id = oi.order_id;

エラー3:NULL値による結合失敗

NULL安全な結合:

-- NULLで結合が失敗する例
SELECT *
FROM products p
JOIN categories c ON p.category_id = c.category_id
WHERE p.category_id = NULL;  -- 常にfalse!

-- 正しい方法
SELECT *
FROM products p
LEFT JOIN categories c ON p.category_id = c.category_id
WHERE p.category_id IS NULL  -- NULLチェック
   OR c.category_name = 'Uncategorized';

💡 ベストプラクティス

設計時の考慮事項

正規化と非正規化のバランス

-- 正規化されたテーブル(結合が必要)
SELECT 
    o.order_id,
    u.username,
    u.email,
    a.street,
    a.city,
    a.postal_code
FROM orders o
JOIN users u ON o.user_id = u.user_id
JOIN addresses a ON u.address_id = a.address_id;

-- 非正規化されたビュー(結合済み)
CREATE MATERIALIZED VIEW order_details_view AS
SELECT 
    o.order_id,
    o.order_date,
    u.username,
    u.email,
    STRING_AGG(p.product_name, ', ') as products,
    SUM(oi.quantity * oi.unit_price) as total_amount
FROM orders o
JOIN users u ON o.user_id = u.user_id
JOIN order_items oi ON o.order_id = oi.order_id
JOIN products p ON oi.product_id = p.product_id
GROUP BY o.order_id, o.order_date, u.username, u.email;

-- インデックスを追加
CREATE INDEX idx_order_details_view_date ON order_details_view(order_date);

パフォーマンステスト

結合のベンチマーク

-- テストデータの準備
INSERT INTO users (username, email)
SELECT 
    'user_' || i,
    'user' || i || '@example.com'
FROM generate_series(1, 10000) i;

INSERT INTO orders (user_id, order_date, total_amount)
SELECT 
    (random() * 9999 + 1)::INT,
    CURRENT_DATE - (random() * 365)::INT,
    (random() * 1000 + 10)::DECIMAL(10,2)
FROM generate_series(1, 100000) i;

-- パフォーマンス測定
\timing on

-- テスト1:INNER JOIN
EXPLAIN (ANALYZE, BUFFERS)
SELECT COUNT(*)
FROM users u
INNER JOIN orders o ON u.user_id = o.user_id
INNER JOIN order_items oi ON o.order_id = oi.order_id;

-- テスト2:LEFT JOIN
EXPLAIN (ANALYZE, BUFFERS)
SELECT COUNT(*)
FROM users u
LEFT JOIN orders o ON u.user_id = o.user_id
LEFT JOIN order_items oi ON o.order_id = oi.order_id;

メンテナンス性の向上

CTEを使った可読性の改善

-- 複雑な結合をCTEで整理
WITH 
active_users AS (
    SELECT user_id, username, email
    FROM users
    WHERE created_at >= '2024-01-01'
    AND status = 'active'
),
recent_orders AS (
    SELECT order_id, user_id, order_date, total_amount
    FROM orders
    WHERE order_date >= CURRENT_DATE - INTERVAL '30 days'
),
order_details AS (
    SELECT 
        oi.order_id,
        SUM(oi.quantity) as total_items,
        COUNT(DISTINCT oi.product_id) as unique_products
    FROM order_items oi
    GROUP BY oi.order_id
)
SELECT 
    au.username,
    au.email,
    COUNT(ro.order_id) as recent_order_count,
    AVG(od.total_items) as avg_items_per_order,
    SUM(ro.total_amount) as total_spent
FROM active_users au
LEFT JOIN recent_orders ro ON au.user_id = ro.user_id
LEFT JOIN order_details od ON ro.order_id = od.order_id
GROUP BY au.user_id, au.username, au.email
HAVING COUNT(ro.order_id) > 0
ORDER BY total_spent DESC;

🎓 上級テクニック

ウィンドウ関数との組み合わせ

-- 結合結果に順位付けとランキング
SELECT 
    u.username,
    p.product_name,
    oi.quantity,
    oi.unit_price,
    o.order_date,
    RANK() OVER (
        PARTITION BY u.user_id 
        ORDER BY oi.quantity * oi.unit_price DESC
    ) as purchase_rank,
    SUM(oi.quantity * oi.unit_price) OVER (
        PARTITION BY u.user_id 
        ORDER BY o.order_date
        ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
    ) as running_total
FROM users u
JOIN orders o ON u.user_id = o.user_id
JOIN order_items oi ON o.order_id = oi.order_id
JOIN products p ON oi.product_id = p.product_id
WHERE o.order_date >= '2024-01-01'
ORDER BY u.username, purchase_rank;

動的な結合条件

-- 条件によって結合方法を変える
CREATE OR REPLACE FUNCTION get_user_orders(
    p_user_id INTEGER,
    p_include_cancelled BOOLEAN DEFAULT FALSE
)
RETURNS TABLE (
    order_id INTEGER,
    order_date DATE,
    status VARCHAR,
    total_amount DECIMAL
) AS $$
BEGIN
    RETURN QUERY
    SELECT 
        o.order_id,
        o.order_date,
        o.status,
        o.total_amount
    FROM orders o
    WHERE o.user_id = p_user_id
    AND (p_include_cancelled OR o.status != 'cancelled');
END;
$$ LANGUAGE plpgsql;

-- 使用例
SELECT 
    u.username,
    uo.*,
    COUNT(oi.item_id) as item_count
FROM users u
CROSS JOIN LATERAL get_user_orders(u.user_id, TRUE) uo
LEFT JOIN order_items oi ON uo.order_id = oi.order_id
GROUP BY u.username, uo.order_id, uo.order_date, uo.status, uo.total_amount;

📚 まとめ:3つ以上のテーブル結合をマスターする

PostgreSQLで複数テーブルを効果的に結合するポイント:

基本パターン(チェーン型・スター型)を理解する4種類のJOIN(INNER/LEFT/RIGHT/FULL)を適切に使い分けるインデックスと実行計画で最適化するCTEやサブクエリで複雑な結合を整理するLATERAL JOINで高度な結合を実現する

3つ以上のテーブル結合は、最初は複雑に見えますが、パターンを理解すれば必ずマスターできます。

今すぐ実践すべき3つのステップ:

  1. まず基本的なINNER JOINで3テーブル結合を試す
  2. EXPLAIN ANALYZEで実行計画を確認する習慣をつける
  3. CTEを使って複雑なクエリを段階的に構築する

これらのテクニックで、複雑なデータ分析も自在にこなせるようになります!


この記事が役立ったら、SQLで苦労している仲間にもシェアしてください。一緒にデータベースマスターを目指しましょう!

コメント

タイトルとURLをコピーしました